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Abstract

This investigation is undertaken to explore the impact of tangent hyperbolic fluid

model and chemical reaction on the Magnetohydrodynamic laminar, incompress-

ible two dimensional steady flow through a stretching surface. A mathematical

model that resembles the physical flow problem has been developed. The pro-

posed problem is modeled as a system of non-linear partial differential equations

describing the conservation laws of mass, momentum and energy. Meanwhile, a

system of non-linear ordinary differential equations are obtained by using appro-

priate similarity transformation on the governing partial differential equations.

The resulting system of ordinary differential equations is solved numerically by

utilizing a shooting technique coupled with Runge-Kutta method of order four,

implemented in the computational software MATLAB. Influence of different phys-

ical parameters on velocity, temperature and concentration profiles are analyzed

through graphs and tables. Numerical values of skin fraction coefficient, Nusselt

number, and Sherwood number are also computed and analyzed.
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Chapter 1

Introduction

Different analysts have conducted comprehensive investigation on 2D boundary

layer flow and heat exchange over a permeable extending sheet in the existence

of magnetic field. Because of their broad utilization in different areas such as

permeable heat exchangers, plasma studies solidification due to atomic reactor

cooling, and filtration forms.

Magnetohydrodynamics is a field of mechanics that studies the magnetic character-

istics and behaviour of electrically conducting fluids. A conducting fluid produces

current when it passes through a magnetic field, as a result Lorentz force is cre-

ated which changes the movement of the fluid. The MHD factor is essential in

managing the cooling rate and for the obtaining the product’s desired properties.

It is of concern that applications of MHD flows occur in a variety of fields of

manufacturing, such as electrical propulsion for space travel, crystal development

in liquids, fusion reactor cooling, etc. The numerical results of MHD flow in

permeable media were obtained by Mcwhirter et al. [1]. Pavlov [2] was the first

who studied the MHD flow over a stretched wall. Geindreau and Auriatlt [3]

studied the tensorial filtration law in a inflexible permeable material under the

impact of a magnetic field with Beavers-Joseph boundary conditions.

The effect of a magnetic field on fluid flow past a porous surface was investigated by

Jat and Chaudhary [4]. As the porosity parameter increases, so does skin friction

1
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and the coupling stress coefficient rises, according to Modather et al. [5]. In the

flow section, there is a magnetic field, Das et al. [6] detailed on nanofluid stream

through an oscillating permeable level plate. Viscous dissipation and Joule heating

abstraction take part in many field like geophysical flow and nuclear engineering.

The Joule heating effect on MHD free convection flow from a vertical flat plate

was studied by Alim et al. [7]. Using Hall and ion-slip currents, Eldahab and Aziz

[8] investigated the impact of viscous dissipation and Joule heating on MHD-free

convection flow across a semi-infinite vertical flat plate.

The Hiemenz flow of a micropolar fluid was studied by Amin and Mohammadein

[9]. Ali et al. [10] explored the MHD conjugate flow across a vertical plate. They

presented how the physical quantities behave against flow govern parameters. Ha-

keem et al. [11] discussed the mass and heat exchanges, as well as heat absorption,

magnetic field and velocity slips are all affected by viscous and Ohmic dissipation.

The nature of MHD free convection flow across a permeable stretching sheet was

calculated by Chaudhary et al. [12].

The thermal radiation impact on MHD fluid flow via a permeable stretched sheet

was examined by Sreenivasulu et al. [13]. Kaladhar et al. [14] explored on the

impact of MHD free convective flow across a permeable medium. The movement

of electrical current produces heat that is known as the Joule heat phenomenon.

Joule heating is often known as Ohmic heating. Joule heating has a regular set of

built-up and technological advancement, such as electrical fires, electrical heaters,

radiant light bulbs and electrical fuses [15].

When a magnetic field is applied over a stretched sheet, Ghosh [16] estimated the

time-dependent flow’s characteristics. A significant work on this subject prevail in

[17–20]. Because of its importance in aerodynamics and space sciences, suction or

injection effects have stimulated the interest of various researchers. Shojaefarde

et al. [21] used sunction/injection to regulate the flow on a super sonic aircraft’s

surface. Makinde and Chinyoka [22] used numerical simulations to study hydro-

magnetic unsteady flow in a permeable material with in the impact of propulsion

parameters. Ganga and Devi [23] investigated the impact of hydrostatic pressure,



Introduction 3

viscosity diversion and Joule heating on MHD flow heat conduction through a

stretching porous surface immersed in a permeable media.

The tangent hyperbolic fluid demonstration is capable of describing shear rate

phenomena. It calculates the amount of fluid required to keep a smaller stream

with a higher shear stress rate. The convective heat exchange investigation of non-

Newtonian tangent hyperbolic fluid in a certain way by enchanting the impacts

of viscous dissipation over a non-linear extending sheet by considering shooting

method examined by Hussain et al. [24]. Partha et al. [25] considered the mixed

convection stream and heat exchange from an exponentially extending surface in

the presence of viscous dissipation.

Mamatha et al. [26] considered the incompressible MHD Carreau Dusty fluid

over a extending sheet with exponentially moldering heat source. The concept of

viscosity is commonly used in fluid mechanics to characterize the shear properties

of a fluid; it can be inadequate to describe non-Newtonian fluids. The properties

are way better considered utilizing tensor-valued constitutive conditions, which

are common within the field of continuum mechanics. In micropolar fluids, Abel

et al. [27] demonstrated how high temperature viscosity affects heat flow over

an expanded surface with varying heat conduction. Under the conditions of low

Reynolds and long wave length, the unsteady movement of a hyperbolic tangent

fluid through a fluid medium in a symmetric porous channel was investigated by

Jyothi et al. [28]. Vendabai [29] considered the unsteady boundary layer stream of

a nanofluid over a extending surface with variable radiation impact within the rate

of heat source. The heat exchange highlights of an unsteady stream of a nanofluid

past a extending sheet with a convective boundary condition are deliberate by

Mansur and Ishak [30]. The impact of transverse magnetic field and heat source

on the boundary layer stream of a Casson nanofluid over a extending exponentially

considered by Sarojamma and Vendabai [31].

The tangent hyperbolic fluid model is main model in the non-Newtonian fluids.

The tangent hyperbolic fluid is commonly utilised in various laboratory studies.

For large-scale magneto-rheological fluid damper coils, Friedman et al. [32] have
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used the tangent hyperbolic fluid model. Akbar et al. [33] investigated the influ-

ence of magnetohydrodynamics flow heat transmission on tangent hyperbolic fluid

across stretched surfaces.

Ibrahim [34] investigated the double stratification’s effect on nanofluid boundary-

layer flow and heat transfer over a vertical plate. The influence of a magnetic field

on the research of nanofluid heat transfer between parallel plates was explained

by Hatami et al. [35].

Fakour et al. [36] used the least square approach to investigate the heat and

mass transport features of squeezing a micropolar fluid within a porous media.

Haile and Shankar [37] studied the impacts of thermal radiation, thick scattering,

and chemical reaction on heat and mass exchange of MHD stream of nanofluids

through a permeable medium. They observed that as the thermal radiation or

thick scattering increases, it causes increase in temperature of the coolant liquid.

Uddin et al. [38] analyzed the free convection stream of magnetic nanofluid with

chemical reaction detected that as the stream speed is decreased by the magnetic

field, the temperature of the liquid increases. The chemical reaction can further

intimate heterogeneous and homogenous processes.

In the case of rugged compound system, the reaction is heterogenous. Magyari

and Chamkha et al. [39] studied the impact of chemical reaction and radiation

on MHD nanofluid flow in permeable medium by using the method of spectral

relaxation. They observed that velocity profile decreases with increase in porosity

parameter.

Chamkha and Rashad [40] debated the effect of chemical reaction on MHD flow

in the existence of heat generation or assimilation of uniform perpendicular ab-

sorptive surface. Das [41] delineated the consequences of chemical reaction with

radiation on the heat and mass swapping along the MHD flow. Graphs and tables

are used to explain the physical behaviour of the useful parameters. Numeri-

cally, the coefficient of skin friction, the local Nusselt number and local Sherwood

number are computed.
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1.1 Thesis Contributions

In this thesis, a review study of Ibrahim [42] has been presented and then extended

for the tangent hyperbolic fluid and chemical reaction. The problem is modeled as

nonlinear PDEs which are converted into a system of ODEs by using appropriate

transformation of similarities. Numerical results are obtained by using the shoot-

ing technique with Runge-Kutta method of order four (RK4) in MATLAB. The

influence of various relevant physical parameters such as magnetic field parameter

M , suction and injection parameter S, Eckert number Ec, Prandtl number Pr,

radiation parameter R, heat generation parameter Q, permeability parameter λ,

Weizenberg number We, chemical reaction parameter r and Schmidt number Sc

on the velocity profile f ′(ξ), temperature profile θ(ξ), concentration profile φ(ξ),

skin friction coefficient Cf , local Nusselt number Nux and Sherwood number Shx

are analyzed graphically as well as in tabular form.

1.2 Dissertation Outline

This research work is further divided into four key chapters.

Chapter 2 demonstrates some important definitions and basic laws that are use-

full in understanding the work in upcoming chapters.

Chapter 3 describes the numerical investigation of impact of radiative MHD flow

with Joule heating over a stretching porous sheet. This chapter is the review of

Ibrahim et al. [42].

Chapter 4 presents the model given in [42] by considering the additional impact of

tangent hyperbolic fluid model and chemical reaction. The dimensionless ODEs

are solved mathematically by method of shooting. Effect of different physical

parameters are illustrated using tables and graphs.

Chapter 5 recapitulate the thesis work and gives the major results obtained from

the entire research and suggests recommendations for the future work.
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All the references used in this research work are listed in Bibliography.



Chapter 2

Basic Concepts and Governing

Equations

Some definitions, basic laws and terminologies are presented in the current chapter,

which will be used in the next chapters.

2.1 Important Definitions

Definition 2.1.1 (Fluid)

“A fluid is a substance that deforms continuously under the application of a shear

stress no matter how small the shear stress may be” [43].

Definition 2.1.2 (Fluid Mechanics)

“Fluid mechanics is defined as the science that deals with the behavior of fluids at

rest (fluid statics) or in motion (fluid dynamics) and the interaction of fluids with

solid or other fluids at the boundaries” [43].

Definition 2.1.3 (Fluid Statics)

“The study of fluid at rest is called fluid statics” [44].

7



Basic Concepts and Governing Eq. 8

Definition 2.1.4 (Fluid Dynamics)

“The study of fluids in motion if the pressure forces are also considered is called

fluid dynamics” [44].

Definition 2.1.5 (Fluid Kinematics)

“The study of fluids in motion, where pressure forces are not considered, is called

fluid kinematics”[44].

Definition 2.1.6 (Viscosity)

“Viscosity is defined as the property of a fluid which offers resistance to the move-

ment of one layer of fluid over another adjacent layer of the fluid.

Mathematically,

µ =
τ
∂u
∂y

where µ is viscosity coefficient, τ is shear stress

and ∂u
∂y

represents the velocity gradient”[44].

Definition 2.1.7 (Magnetohydrodynamics)

“Magnetohydrodynamics (MHD) is concerned with the flow of electrically conduct-

ing fluids in the presence of magnetic fields, either externally applied or generated

within the fluid by inductive action” [45].

Definition 2.1.8 (Nanofluids)

“Nanofluids are engineered by suspending nanoparticles with average sizes below

100 nm in traditional heat transfer fluids such as water, oil, and ethylene glycol.

A very small amount of guest nanoparticles, when dispersed uniformly and sus-

pended stably in host fluids, can provide dramatic improvements in the thermal

properties of host fluids” [46].
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Definition 2.1.9 (Density)

“Density is defined as mass per unit volume.

That is µ = m
v

, where, v is the volume” [43] .

Definition 2.1.10 (Pressure)

“Pressure is defined as a normal force exerted by a fluid per unit area. We speak

of pressure only when we deal with a gas or a liquid.

It is formulated as: p = F
A

” [43].

Definition 2.1.11 (Boundary Layer)

“The region where viscous effects are dominant are known as boundary layer region

around which fluid is flowing. The concept of boundary layer, implies that flow

at high Reynold numbers can be divided into two unequally large regions. In the

bulk of flow region, the viscosity can be neglected, and the flow corresponds to the

inviscid limiting solution. This is called the inviscid outer flow.

The second region is the very thin boundary layer at wall where the viscosity must

be taken into account. Within the boundary layer the two different flow forms,

that is, the flow can be laminar or turbulent ” [47].

2.2 Types of Flow

Definition 2.2.1 (Steady vs Unsteady Flow)

“ The term steady implies no change of properties, velocity, temperature, etc., at

a point with time. The opposite of steady is unsteady” [43].

Definition 2.2.2 (Laminar vs Turbulent Flow)

“Some flows are smooth and orderly while others are rather chaotic. The highly

ordered fluid motion characterized by smooth layers of fluid is called laminar.

The highly disordered fluid motion that typically occurs at high velocities and is

characterized by velocity fluctuations is called turbulent” [43].
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Definition 2.2.3 (Uniform Flow)

“The simplest plane flow is one for which the streamlines are all straight and

parallel, and the magnitude of the velocity is constant. This type of flow is called

a uniform flow” [48].

Definition 2.2.4 (Natural vs Forced Flow)

“A fluid flow is said to be natural or forced, depending on how the fluid motion

is initiated. In forced flow, a fluid is forced to flow over a surface or in a pipe by

external means. Whereas In natural flows, fluid motion is due to natural means

such as the buoyancy effect” [43].

Definition 2.2.5 (External vs Internal Flow)

“The flow of an unbounded fluid over a surface such as a plate, a wire, or a pipe

is external flow.

The flow in a pipe or duct is internal flow if the fluid is completely bounded by

solid surfaces. For example, flow of water in a pipe is internal flow” [49].

Definition 2.2.6 (Viscous vs Inviscous Flow)

“When two fluid layers move relative to each other, a friction force develops be-

tween them and the slower layer tries to slow down the faster layer. This internal

resistance to flow is quantified by the fluid property viscosity, which is a measure

of internal stickiness of the fluid.

Viscosity is caused by cohesive forces between the molecules in liquids and by

molecular collisions in gases. There is no fluid with zero viscosity, and thus all

fluid flows involve viscous effects to some degree.

Flows in which the frictional effects are significant are called viscous flows. How-

ever, in many flows of practical interest, there are regions (typically regions not

close to solid surfaces) where viscous forces are negligibly small compared to iner-

tial or pressure forces. Neglecting the viscous terms in such inviscid flow regions

greatly simplifies the analysis without much loss in accuracy” [43].
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2.3 Classifications and Properties of Fluid

Definition 2.3.1 (Compressible vs Incompressible Flow)

“A flow is classified as being compressible or incompressible, depending on the

level of variation of density during flow.

Incompressibility is an approximation, and a flow is said to be incompressible if

the density remains nearly constant throughout. Therefore, the volume of every

portion of fluid remains unchanged over the course of its motion when the flow (or

the fluid) is incompressible.

The densities of liquids are essentially constant, and thus the flow of liquids is typ-

ically incompressible. Therefore, liquids are usually referred to as incompressible

substances.

A pressure of 210 atm, for example, causes the density of liquid water at 1 atm to

change by just 1 percent. Gases, on the other hand, are highly compressible.

A pressure change of just 0.01 atm, for example, causes a change of 1 percent in

the density of atmospheric air” [43].

Definition 2.3.2 (Newtonian Fluids vs non-Newtonian Fluids)

“Fluids for which the rate of deformation is linearly proportional to the shear

stress are called Newtonian fluids.

In one-dimensional shear flow of Newtonian fuids, shear stress can be expressed

by the linear relationship as

τyx = µ

(
∂u

∂y

)n
, (2.1)

where the constant of proportionality µ is called the coefficient of viscosity or the

dynamic (or absolute) viscosity of the fluid.” Examples are air, water, kerosene

and gasoline. “Fluids for which the shear stress is not linearly related to the shear

strain rate are called non-Newtonian fluids” [43].
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Definition 2.3.3 (Ideal vs Real Fluid)

“An ideal fluid is defined as a non-viscous and incompressible fluid. That is the

fluid has zero viscosity and a constant density (ρ = constant, µ = 0).

Although no ideal fluid exists, many real fluid have small viscosity and the effects

of compressibility are negligible” [50].

2.4 Heat Transfer Mechanism and related Prop-

erties

Definition 2.4.1 (Conduction)

“Conduction is the transfer of heat from one part of a body at a higher temperature

to another part of the same body at a lower temperature” [51].

Definition 2.4.2 (Convection)

“Convection, relates to the transfer of heat from a bounding surface to a fluid in

motion, or to the heat transfer across a ow plane within the interior of the flowing

fluid” [51].

Definition 2.4.3 (Forced Convection)

“If the fluid motion is induced by a pump, a blower, a fan, or some similar device,

the process is called forced convection” [51].

Definition 2.4.4 (Natural Convection)

“If the fluid motion occurs as a result of the density difference produced by the

temperature difference, the process is called free or natural convection.” [51]

Definition 2.4.5 (Mixed Convection)

“Mixed convection occurs when both natural convection and forced convection

play significant roles in the transfer of heat. Mixed convection occurs when the

heat transfer is significantly different from that for pure natural convection ” [51].
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Definition 2.4.6 (Radiation)

“Radiation, or more correctly thermal radiation, is electromagnetic radiation emit-

ted by a body by virtue of its temperature and at the expense of its internal energy.

All heated solids and liquids, as well as some gases, emit thermal radiation. The

transfer of energy by conduction requires the presence of a material medium, while

radiation does not” [51].

Definition 2.4.7 (Thermal Conductivity)

“The Fourier heat conduction law states that the heat flow is proportional to the

temperature gradient. The coefficient of proportionality is a material parame-

ter known as the thermal conductivity which may be a function of a number of

variables” [52].

Definition 2.4.8 (Thermal Diffusivity)

“The rate at which heat diffuses by conducting through a material depends on the

thermal diffusivity and can be defined as:

α =
κ

ρCp
,

where α is the thermal diffusivity, κ is the thermal conductivity, ρ is the density

and Cp is the specific heat at constant pressure” [52].

2.5 Fundamental Equations and Conservation Laws

2.5.1 Continuity Equation

“The conservation of mass of fluid entering and leaving the control volume, the

resulting mass balance is called the equation of continuity. This equation reflects

the fact that mass is conserved. Mathematically, it can be written as

∂ρ

∂t
+ O.(ρV) = 0.
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For steady case rate of time will be constant, so continuity equation becomes

O. (ρV) = 0.

In the case of incompressible flow, density does not variate so continuity equation

can be written as, O. (V) = 0,

where, V is the velocity of fluid” [53].

2.5.2 Momentum Equation

“For any fluid the momentum equation is

∂

∂t
(ρV) + O.[(ρV) V]− O.T− ρg = 0, (2.2)

since T = −pI + τ , the momentum equation takes the form

ρ

(
∂V

∂t
+ V.OV

)
= O. (−pI + τ) + ρg. (2.3)

Equation (2.2) is a vector equation and can be decomposed further into three scaler

components by taking the scaler product with the basis vectors of an appropriate

orthogonal coordinate system.

By setting g = gOz, where z is the distance from an arbitrary reference elevation

in the direction of gravity, Eq. (2.2) can also be expressed as

ρ
DV

Dt
= ρ

(
∂V

∂t
+ V.OV

)
= O. (−pI + τ) + ρ(gOz), (2.4)
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where D
Dt

is the substantial derivative.

The momentum equation then states that the acceleration of a particle following

the motion is the result of net force, expressed by the gradient of pressure, viscous

and gravity forces” [53].

2.5.3 Energy Equation

“Conservation of thermal energy is expressed by

ρ

[
∂U

∂t
+ V.OU

]
= τ : OV + pO.VO (kOT )±Hr, (2.5)

By involving the definition of the internal energy ,

ρCv

[
∂T

∂t
+ V.OT

]
= τ : OV + pO.VO (kOT )±Hr. (2.6)

For heat conduction in solid i.e. when V = 0,OV = 0 and Cv = C the resulting

equation is

ρC
∂T

∂t
= O (kOT )±Hr. (2.7)

Where U is the internal energy per unit mass, and Hr is the heat of reaction” [53].

2.6 Solution Methodology

To elaborate the shooting method, consider the following nonlinear boundary value

problem.

f ′′(x) = f(x)f ′(x) + 2f 2(x)

f(0) = 0 f(G) = L

 (2.8)



Basic Concepts and Governing Eq. 16

Introduce the following notations, to reduce the order of the above boundary value

problem.

f = E1, f ′ = E ′1 = E2, f ′′ = E ′2. (2.9)

As a result, (2.8) is converted into the following system of first order ODEs.

E ′1 = E2, E1(0) = 0, (2.10)

E ′2 = E1E2 + 2E2
1 , E2(0) = w, (2.11)

where w denotes the missing initial condition that will be guessed.

The RK4 method will be used to solve the above IVP numerically. The missing

condition w must be selected in such a way that.

E1 (G,w) = L. (2.12)

For convenience, now onward E1(G,w) will be denoted by E1(w).

Let us further denote E1(w)− L = X(w), so that

X (w) = 0. (2.13)

The following iterative formula can be used to solve the given equation using

Newton’s method.

wn+1 = wn − X (wn)
∂X(wn)
∂w

, n = 0, 1, 2, 3, . . . . (2.14)

or

wn+1 = wn − E1 (wn)− L
∂E1(wn)
∂w

. (2.15)
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For solving (2.15), introduce the following notations.

∂E1

∂w
= E3,

∂E2

∂w
= E4. (2.16)

Using these new notations the Newton’s iterative scheme, will then get the form.

wn+1 = wn − E1 (wn)− L
E3 (wn)

. (2.17)

Now differentiating the system of two first order ODEs (2.10)-(2.11) with respect

to w, we get another form of ODEs, as follows.

E ′3 = E4, E3(0) = 0. (2.18)

E ′4 = E3E2 + E1E4 + 4E1E3, E4(0) = 1. (2.19)

We have the following initial value problem when we combine the four ODEs

(2.10), (2.11), (2.18) and (2.19).

E ′1 = E2, E1(0) = 0,

E ′2 = E1E2 + 2E2
1 , E2(0) = w,

E ′3 = E4, E3(0) = 0.

E ′4 = E3E2 + E1E4 + 4E1E3, E4(0) = 1.

The above system will be solved numerically by Runge-Kutta method of order

four.

The stopping criteria for the Newton’s technique is set as,

|E1(w)− L| < ε,

where ε > 0 is an arbitrarily small positive number.
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2.7 Dimensionless Parameters

Definition 2.6.1 (Nusselt Number Nux)

“It is the ratio of the convective to the conductive heat transfer at a boundary in

a fluid. Mathematically,

Nux =
hL

k
,

where h stands for convective heat transfer, L for the characteristics length and k

stands for the thermal conductivity” [54].

Definition 2.6.2 (Skin Friction Coefficient Cfx)

“Skin friction coefficient occurs between the fluid and the solid surface which leads

to slow down the motion of the fluid. The skin friction coefficient can be defined

as

Cfx =
2τw
ρU2

,

where τw denotes the wall shear stress, ρ the density and U the free-stream veloc-

ity” [54].

Definition 2.6.3 (Sherwood Number)

“It expresses the ratio of the heat transfer to the molecular diffusion. It charac-

terizes the mass transfer intensity at the interface of phases” [55].

Definition 2.6.4 Prandtl Number (Pr)

“It is the ratio between the momentum diffusivity (ν) and thermal diffusivity (α).

Mathematically, it can be defined as

Pr =
ν

α
=

µ/ρ

k/cp
=
µCp
k
,

where µ represents the dynamic viscosity, Cp denotes the specific heat and k stands

for thermal conductivity.

The relative thickness of thermal and momentum boundary layer is controlled
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by Prandtl number. For small Pr, heat distributed rapidly corresponds to the

momentum” [54].

Definition 2.6.5 Eckert Number (Ec)

“It is the dimensionless number used in continuum mechanics. It describes the

relation between flows and the boundary layer enthalpy difference and it is used

for characterized heat dissipation” [54].

Definition 2.6.6 ( Schmidt Number)

“This number expresses the ratio of the kinematic viscosity, or momentum trans-

fer by internal friction, to the molecular diffusivity. It characterizes the relation

between the material and momentum transfers in mass transfer” [55].

Definition 2.6.7 (Reynolds Number)

“It is defined as the ratio of inertia force of a flowing fluid and the viscous force

of the fluid. Mathematically,

Rex =
V L

ν

where V denotes the free stream velocity, L is the characteristic length and ν

stands for kinematic viscosity”[44].

Definition 2.6.8 (Weissenberg Number We)

“The dimensionless Weissenberg number, formulated by German physicist Karl

Weissenberg, is defined as

We =
ρU2

τ
, (2.20)

where ρ is the fluid density, U denotes the flow velocity and τ stands for the shear

stress.

This number expresses the characteristic material time (relaxation time) and the

shear velocity. It characterizes the velocity and time relations in rheological pro-

cesses in viscoelastic shear flow. Furthermore, it also expresses the ratio of the

dynamic viscoelastic force to the viscous force” [55].



Chapter 3

Radiative MHD Flow with Joule

Heating over a Stretched Porous

Sheet

3.1 Introduction

In this chapter, an exploration on MHD flow over a porous stretching sheet in

the presence of magnetic field, heat generation and heat source. By using similar-

ity variables, the governing non-linear PDEs are converted into ODEs. By using

shooting technique, the solution of ordinary differential equation is obtained. At

the end of this chapter, the impact of various parameters of the transformed ODEs

is discussed for dimensionless velocity, temperature, Nusselt number and skin fric-

tion coefficient. Investigation of numerical results is presented through graph and

tables. This chapter provides a detailed review of Ibrahim et al. [42].

3.2 Mathematical Modeling

In the existence of viscous dissipation and heat conduction, we investigate a steady,

radiative flow of a viscous liquid in 2D over a permeable stretching sheet arranged

20
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at y = 0. The direction of the flow is taken along x-axis while y-axis is considered

normal to it. In the perpendicular direction to the sheet, a uniform magnetic

field of strength B0 is applied. The sheet’s stretching velocity is considered to be

uw = cx, where c is a positive constant. Figure 3.1 depicts the flow configuration

and coordinate system. Along the x-axis two equal and opposite forces are applied

to stretch the surface while maintaining the origin stationary.

Figure 3.1: Physical configuration

3.3 The Governing Equations

The flow is explained by considering the 2D governing equations containing the

continuity, momentum and energy as follow:

• Continuity Equation:

∂u

∂x
+
∂v

∂y
= 0, (3.1)
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• Momentum Equation:

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− σB2

0

ρ
u− ν

Kp

u, (3.2)

• Energy Equation:

u
∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂y2
+

ν

Cp

(
∂u

∂y

)2

− 1

ρCp

∂qr
∂y

+
σB2

0

ρCp
u2 +

Q0

ρCp
(T∞ − T ).

(3.3)

Boundary Conditions The dimensional form of the boundary conditions is given

as.

u = cx, v = −v0,
∂T

∂y
= Bx2, at y = 0,

u = 0, T = T∞, as y →∞.

 (3.4)

In the preceding model, u and v are velocity components in x and y directions, re-

spectively. The x and y are axial and normal coordinates. T is a fluid temperature,

B0 is magnetic field strength, σ is the electrical conductivity, ν is the kinematic

viscosity, ρ is the density of the fluid, k is thermal conductivity, Cp is the specific

heat at constant pressure and Kp is the permeability of porous medium.In 1904,

Ludwig Prandtl first define the aerodynamic boundary layer at the third Interna-

tional Congress of Mathematician in Heidleberg Germany. After that one of his

student Henry Blasius presented the boundary layer approximation with similarity

transformation. By boundary layer approximation theory, here we have considered

those terms which have greater impact of magnitude while eliminated those who

have less impact of magnitude from the well known Navier-Stokes equations. Here

qr known as Rosseland radiative heat flux which can be defined as

qr = −4σ∗

3k∗
∂T 4

∂y
, (3.5)
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where k∗(absorption coefficient) and σ∗ (Boltzman constant). By applying Taylor

series, T 4 can be expanded about T∞ which is ambient temperature.

T 4 = T 4
∞ + 4T 3

∞(T − T∞) +
12T 2

∞
2!

(T − T∞)2 +
24T∞

3!
(T − T∞)3 + ...

By ignoring the higher order terms of the reduced Taylor series gets the form

T 4 = T 4
∞ + 4T 3

∞(T − T∞).

thus, we have

∂T 4

∂y
= 4T 3∂T

∂y
. (3.6)

Using Eq. (3.6) in Eq. (3.5) and differentiate Eq. (3.5) with respect to y,

∂qr
∂y

= −16σ∗T 3
∞

3k∗
∂2T

∂y2
. (3.7)

u = cxf ′(ξ), v = −
√
cνf(ξ),

ξ = y

√
c

ν
, T = T∞ +Bx2

√
ν

c
θ(ξ).

 (3.8)

The detailed procedure for conversion the Eqs. (3.1)-(3.3) into non-dimensional

form has been described as follows. First, we include the below procedure for the

conversion of Eq. (3.1) into the dimensionless form. So in order to derive the left

hand side of the Eq. (3.1) following procedure is adopted.

u = cxf ′(ξ). (3.9)

v = −
√
cνf(ξ). (3.10)

Differentiate Eq. (3.9) w.r.t. ‘x′

∂u

∂x
=

∂

∂x
(cxf ′(ξ)) ,

∂u

∂x
= cf ′(ξ). (3.11)
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Similarly, differentiating Eq. (3.10) w.r.t. ‘y′

∂v

∂y
=

∂

∂y

(
−
√
cνf(ξ)

)
,

∂v

∂y
= −f ′(ξ)

√
cν

√
c

ν
,

∂v

∂y
= −cf ′(ξ). (3.12)

Adding Eq. (3.11) and (3.12), we get (3.1),

∂u

∂x
+
∂v

∂y
= cf ′(ξ)− cf ′(ξ),

∂u

∂x
+
∂v

∂y
= 0. (3.13)

Hence the continuity equation is satisfied, identically. Now we include the proce-

dure for the conversion of Eq. (3.2) into dimensionless form, So in order to derive

the left hand side of the Eq. (3.2) following procedure is adopted.

u
∂u

∂x
+ v

∂u

∂y
= cxf ′(ξ)

∂

∂x
(cxf ′(ξ)) + (−

√
cνf(ξ)

∂

∂y
(cxf ′(ξ),

u
∂u

∂x
+ v

∂u

∂y
= cxf ′(ξ)cf ′(ξ) + (−

√
cνf(ξ)

1√
ν
c

3
2xf ′′(ξ)),

u
∂u

∂x
+ v

∂u

∂y
= c2xf ′

2

(ξ)− c2xff ′′. (3.14)

Similarly for the derivation of right hand side of Eq. (3.2) following steps will be

useful.

ν
∂2u

∂y2
− σB2

0

ρ
u− ν

Kp

. (3.15)

Differentiating Eq. (3.9) w.r.t. ‘y′

∂u

∂y
=

∂

∂y
cxf ′(ξ),

∂u

∂y
=
c

3
2

ν
xf ′′(ξ).
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Again differentiating above relation w.r.t. ‘y′

∂2u

∂y2
=
c

3
2

ν
xf ′′′(ξ)

√
c

ν
,

∂2u

∂y2
=
c2x

ν
f ′′′(ξ). (3.16)

By putting Eq. (3.16) in Eq. (3.15)

= c2xf ′′′(ξ)− σB2
0

ρ
ρcxf ′(ξ)− ν

Kp

cxf ′(ξ),

= c2xf ′′′(ξ)−
(
σB2

0

ρ
+

ν

Kp

)
cxf ′(ξ). (3.17)

Now Combining Eqs. (3.14) and Eq. (3.17)

c2xf ′
2

(ξ)− c2xff ′′ = c2xf ′′′(ξ)−
(
σB2

0

ρ
+

ν

Kp

)
cxf ′(ξ),

c2xf ′′′(ξ)−
(
σB2

0

ρ
+

ν

Kp

)
cxf ′(ξ)− c2xf ′2(ξ) + c2xff ′′ = 0.

Dividing by ‘c2x‘

f ′′′ + ff ′′ − f ′2 − (M + λ) f ′ = 0.

Where M =
σB2

0

ρc
, λ = ν

Kpc
, are magnetic and porosity parameter respectively.

Next converting the energy equation into the dimensionless form.

By using the Eq. (3.8) into Eq. (3.3)

T = T∞ +Bx2
√
ν

c
θ(ξ). (3.18)

Differentiating Eq. (3.18) w.r.t ‘x′ we have

∂T

∂x
=

∂

∂x

(
Bx2

√
ν

c
θ(ξ)

)
,

∂T

∂x
= 2Bx

√
ν

c
θ(ξ). (3.19)
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Similarly, differentiating Eq. (3.18) w.r.t ‘y′

∂T

∂y
= Bx2

√
ν

c
θ′(ξ)

√
c

ν
,

∂T

∂y
= Bx2θ′(ξ). (3.20)

Now using Eqs. (3.19) and (3.20) into the left hand side of Eq. (3.3)

= u
∂T

∂x
+ v

∂T

∂y
,

= cxf ′(ξ)2Bx

√
ν

c
θ(ξ)−

(√
cνf(ξ)Bx2θ′(ξ)

)
,

=
√
cνf ′(ξ)2Bx2θ(ξ)−

√
cνf(ξ)Bx2θ′(ξ). (3.21)

Now using Eq. (3.8) into the right hand side of Eq. (3.3), we have

=
k

ρCp

∂2T

∂y2
+

ν

Cp

(
∂u

∂y

)2

− 1

ρCp

∂qr
∂y

+
σB2

0

ρCP
u2 +

Q0

ρCp
(T∞ − T ),

=
k

ρCp

∂2

∂y2

(
T∞ +Bx2

√
ν

c
θ(ξ)

)
+

ν

Cp

(
∂

∂y
(cxf ′(ξ))

)2

− 1

ρCp

∂

∂y

(
−4σ∗

3k∗
∂T 4

∂y

)
+
σB2

0

ρCp
(cxf ′(ξ))

2
+

Q0

ρCp

(
T∞ − T∞ −Bx2

√
ν

c
θ(ξ)

)
,

=
k

ρCp

∂

∂y

(
Bx2

√
ν

c
θ′(ξ)

√
c

ν

)
+

ν

Cp
c2x2 (f ′′(ξ))

2 c

ν
+

1

ρCp

16

3

σ∗T 3

k∗
∂2T

∂y2

+
σB2

0

ρCp
c2x2f ′

2

(ξ) +
Q0

ρCp

(
−Bx2

√
ν

c
θ(ξ)

)
,

=
k

ρCp

(
θ′′(ξ)Bx2

√
c

ν

)
+

1

Cp
(c3x2)f ′′

2

(ξ) +
1

ρCp

16

3

σ∗T 3

k∗
θ′′(ξ)Bx2

√
c

ν

+
σB2

0

ρCp
c2x2f ′

2

(ξ) +
Q0

ρCp

(
−Bx2

√
ν

c
θ(ξ)

)
,

=
k

ρCp

(
θ′′(ξ)Bx2

√
c

ν

)
+

16σ∗T 3
∞

ρCp3k∗

(
θ′′(ξ)Bx2

√
c

ν

)
+
σB2

0

ρCp
c2x2f ′

2

(ξ) +
Q0

ρCp

(
−Bx2

√
ν

c
θ(ξ)

)
+

1

Cp

(
c3x2f ′′

2

(ξ)
)
. (3.22)

Multiplying Eq. (3.21) by ρCP
kBx2

√
ν
c

ρCp
kBx2

√
ν

c

(√
cνf ′(ξ)2Bx2θ(ξ)

)
− ρCp
kBx2

√
ν

c

(√
cνf ′(ξ)2Bx2θ(ξ)

)
,
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⇒ ρCp
kBx2

νf ′(ξ)θ(ξ)2Bx2 − νρCp
k

θ′(ξ)f(ξ),

(3.23)

⇒ 2Prf ′(ξ)θ(ξ)− Prθ′(ξ)f(ξ). (3.24)

Multiplying Eq. (3.22) by ρCp
kBx2

√
ν
c

⇒ ρCp
kBx2

√
ν

c

(
k

ρCp
(θ′′(ξ)Bx2

√
c

ν
)

)
+

ρCp
kBx2

√
ν

c

(
c3x2

Cp
f ′′

2

(ξ)

)
+

ρCp
kBx2

√
ν

c

(
σB2

0

ρCp
c2x2f ′

2

(ξ)

)
− ρCp
kBx2

√
ν

c

Q0

ρCp

(
Bx2

√
ν

c
θ(ξ)

)
+

ρCp
kBx2

√
ν

c

(
16σ∗T 3

∞
ρCP3k∗

(θ′′(ξ))Bx2
√
c

ν

)
,

⇒ θ′′
(

1 +
4

3
R

)
+
c3ρCp
kBCp

√
ν

c
f ′′

2

(ξ) +
ρCpσB

2
0c

2

kBρCp

√
ν

c
f ′

2

(ξ)− PrQθ.

Multiplying and dividing by ‘cν’

θ′′
(

1 +
4

3
R

)
cν

cν
+
c3ρCp
kBCp

√
ν

c
f ′′

2

(ξ)
cν

cν
+
ρCpσB

2
0c

2

kBρCp

√
ν

c

cν

cν
f ′

2

(ξ)− cν

cν
PrQθ,

θ′′(1 +
4

3
R) + PrEc

(
f ′′

2

+Mf ′
2
)
− PrQθ. (3.25)

Combining Eq. (3.24) and (3.25)

2Prf ′(ξ)θ(ξ)− Prθ′(ξ)f(ξ) = θ′′(1 +
4

3
R) + PrEc

(
f ′′

2

+Mf ′
2
)
− PrQθ,

(1 +
4

3
R)θ′′ + Prθ′(ξ)f(ξ)− 2Prf ′(ξ)θ(ξ) + PrEc

(
f ′′

2

+Mf ′
2
)
− PrQθ = 0.

Next for converting the associated boundary conditions into the dimensionless

form, the following steps have been implemented as:

u = cxf ′(ξ) at y = 0, cxf ′(ξ) = cx,

cxf ′(0) = cx, at y = 0, f ′(0) = 1.

v = −
√
cνf(ξ) at y = 0, v = −v0,

− v0 = −
√
cνf(ξ), v0 =

√
cνf(0) at y = 0, f(0) =

v0√
cν
,
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S =
v0√
cν

V f(ξ) at ξ = 0, f(0) = S,

T = T∞ +Bx2
√
ν

c
θ(ξ) at y = 0,

∂T

∂y
= Bx2,

∂T

∂y
= Bx2

√
ν

c
θ′(ξ).

c

ν
,

Bx2 = Bx2θ′(0), at y = 0, θ′(0) = 1.

u = 0 at y →∞, cxf ′(ξ) = 0,

cxf ′(∞) = 0 at y →∞, f ′(∞) = 0.

T = T∞ at y →∞, T = T∞ +Bx2
√
ν

c
θ(ξ) at y →∞,

Bx2
√
ν

c
= 0, θ(∞) = 0.

The final dimensionless form of the governing equations is:

f ′′′ + ff ′′ − (f ′
2 − (M + λ)f ′ = 0, (3.26)

(1 +
4

3
R)θ′′ + Prfθ′ − 2Prf ′θ + PrEc

(
f ′′

2

+Mf ′
2
)
− PrQθ = 0. (3.27)

The transformed boundary conditions (3.3) formulated as:

f(0) = S, f ′(0) = 1, θ′(0) = 1,

f(∞) = 0, θ(∞) = 0.

 (3.28)

In the above equations the dimensionless quantities are formulated as follows.

M =
σB2

0

ρc
, λ =

ν

Kpc
,

Ec =
c

5
2

√
νBCp

, Q =
Q0

ρCpc
,

Pr =
ρCpν

k
, R =

4σ∗T 3
∞

k∗k
.
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3.4 Physical Quantities of Interest

The skin friction coefficient (Cf ) and the Nusselt number (Nux) are the main

physical quantities, we discussed here.

The skin friction coefficient Cf can be expressed as:

Cf =
τw
ρuw2

,

τw = µ

(
∂u

∂y

)
y=0

,

∂u

∂y
= cxf ′′(ξ)

√
c

ν
,

Cf = µ

(
cx
√

c
ν
f ′′(0)

ρc2x2

)
,

Cf =

√
ν√
cx
f ′′(0),

Cf =
1√
Re

f ′′(0),

Re
1
2Cf = f ′′(0).

Mathematical form of the Nusselt number Nux is

Nux =
xqw

k(Tw − T∞)
,

qw =

(
−
(
k +

16σ∗T 3
∞

3k∗

)(
∂T

∂y

))
y=0

,

Nux =
−x
(
k + 16σ∗T 3

∞
3k∗

)
Bx2

k
(
Bx2

√
ν
c
θ(ξ)

) ,

Nux =
−Bx3

(
k + 16σ∗T 3

∞
3k∗

)
Bx2

(
k
√

ν
c

)
θ(0)

,

Nux =
−
√

c
ν
x
(
1 + 4

3
R
)

θ(0)
,

Nux =
−R

1
2
e

(
1 + 4

3
R
)

θ(0)
,

Re
−1
2 Nux = −

1 + 4
3
R

θ(0)
.
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where, the local Reynolds number is: Rex = uwx
ν
.

3.5 Solution Methodology

To obtain the numerical solution for the system of ordinary differential equations

(3.26) and (3.27) subject to boundary conditions Eq. (3.28), the shooting method

with RK4 has been used. First, the momentum equation is solved independently.

Following notations have been considered for the conversion of these equation into

a system of first order differential equations as follows:

f = g1, f ′ = g′1 = g2, f ′′ = g′2 = g3, f ′′′ = y′′′1 = y′′2 = y′3.

Rewriting these representations with initial conditions, as a result the momentum

equation is converted into following system of first order ODEs.

g′1 = g2; g1(0) = S,

g′2 = g3; g2(0) = 1,

g′3 = (g1g3) + g2
2 + (M + λ)g2; g3(0) = χ.

where χ is the missing initial condition. The IVP has been solved by using RK4

method.

The domain of the IVP has been taken as [0, ξ∞] instead of [0,∞). Where ξ∞ ia

chosen in such a way that no significant variation is observed in the solution for

ξ > ξ∞.

The missing condition χ is to be chosen such that, the component g2 satisfies the

follow boundary condition.

g2(ξ∞, χ) = 0.

To solve the above equation, Newton’s method is used to refine the value of χ with

following iterative scheme.

χj+1 = χj − g2(ξ∞,χj)
∂
∂χ

(g2(ξ∞,χj))
, j = 0, 1, 2, 3, . . . .
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We further introduce the following notations,

∂g1
∂χ

= g4,
∂g2
∂χ

= g5,
∂g3
∂χ

= g6.

Hence the Newton’s iterative scheme gets the following form

χj+1 = χj −
g2(ξ∞, χj)

g5(ξ∞, χj)
, j = 0, 1, 2, 3, . . . .

Now differentiating the system of first order ODEs with respect to χ, three more

equations will be appeared.

g′4 = g5; g4(0) = 0,

g′5 = g6; g5(0) = 0,

g′6 = − (g1g6 + g4g3) + 2g2g5 + (M + λ) g5; g6(0) = 1.

The stoping criteria for the Newton’s method is set as. The Newton’s iterative

process is repeated until the following condition is met.

|g2(ξ∞, χ)| < ε,

here ε is taken as 10−6.

To numerically solve the Eq. (3.27), the missing condition at θ(0) is q.

The following representations are considered:

θ = H1, θ′ = H2, θ′′ = H ′2.

As a result, the energy equation (3.27) is converted into the following system of

first order ODEs.

H ′1 = H2; H1(0) = q,

H ′2 =
1

1 + 4
3
R

(
−Prg1H2 + 2Prg2H1 − PrEc

(
g23 +Mg22

)
+ PrQH1

)
; H2(0) = 1.

The above IVP will be numerically solved by RK4 technique. In the above initial

value problem, the missing condition q is satisfy the following relation.
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H1(ξ∞, q) = 0.

The above equation can be solved by using Newton’s method with the following

iterative formula.

qj+1 = qj −
H2(ξ∞, q)

H2
′(ξ∞, q)

.

We further introduce the following notations,

∂H1

∂q
= H3,

∂H2

∂q
= H4.

Now differentiating the system of two first order ODEs with respect to q, we get

another system of ODEs, as follows.

H ′3 = H4; H3(0) = 1,

H ′4 =
1

1 + 4
3
R

(−Prg1H4 + 2Prg2H3 + PrQH3) ; H4(0) = 0.

The stopping criteria for the Newton’s method is set as.

{|H1(ξ∞, q)|} < 10−6.

3.6 Results and Discussion

In this section, the numerical results have been displayed in the form of graphs and

tables. Computations are conducted for different values of the magnetic param-

eter M , permeability parameter λ, suction and injection parameter S, Radiation

parameter R, Prandtl number Pr, Eckert number Ec, heat generation parameter

Q and impact of these parameters on velocity and temperature profiles are de-

bated. In Figure 3.2 it is clear that velocity profile decreases with the enhancing

value of M . Increasing value of M creates the lorentz force and collision between

the conducting molecules increases in the presence of this force due to which tem-

perature of the fluid increases. The effects of the permeability parameter λ on
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velocity profile f ′(ξ) are depicted in Figure 3.3. It is clear that velocity profile

is decreasing by increasing the value of λ. It is comprehensively known that the

expansion of permeable material within the stream causes a drag force, causing

the stream to slow down. The impacts of magnetic parameter M on temperature

profile θ(ξ) are depicted in Figure 3.4. It is clear that temperature profile increas-

ing by increasing the value of M , due to Lorentz force admitted by the magnetic

field in the flow region temperature rises with magnetic parameter. In Figure 3.5

with the increasing permeability parameter λ the fluid temperature rises in case of

(S = −0.5) and (S = 0.5). As addition of permeable material in the flow causes a

drag force, causing the flow to slow down and temperature of the fluid increases.

Figure 3.6 demonstrates that if the value of Radiation parameter R enhances, the

temperature profile also increase and heat energy will be liberated to the fluid. so,

greater value of R elaboration takes place in the temperature profile. Figure 3.7

shows that if we increases the values of Prandtl number Pr the distribution of

Heat is transferred away from the hot surface is steady. When the values of Pr

declines the dispersing of heat away from the heated surface is fast. Hence tem-

perature profile decreases with increasing of Prandtl number values. In Figure 3.8

it has been found that Increasing the value of Ec the temperature profile reduced.

If the value of Ec is positive, it causes cooling of the sheet. physically Q > 0

demonstrates Tw > T∞, which involves the supply of heat to the flow from the

wall. Therefore, if the value of Q increases in the existence of (S = −0.5) and

suction (S = 0.5) the temperature profile declines as shown in Figure 3.9.

The influence of various effective parameters on the skin friction coefficient Cf and

the local Nusselt number NuxRe
−1
2
x is shown in Tables 3.1 and 3.2.

In Table 3.1 for the rising the value of M and λ, local Nusselt number NuxRe
−1
2
x

and skin friction coefficient CfRe
1
2
x are decreases. For the rising value of radiation

parameter R, Prandtl number Pr, Eckert number Ec and Q, the local Nusselt

number NuxRe
−1
2
x increases for S = −0.5. Table 3.2 shows the behaviour of local

Nusselt number NuxRe
−1
2
x and skin friction coefficient CfRe

1
2
x for various param-

eter. For increasing the value of M , Nusselt number NuxRe
−1
2
x increases and the

skin friction coefficient CfRe
1
2
x decreases. For rising the value of λ local Nusselt
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number and the skin friction coefficient are found to decrease. It can be observed

that the local Nusselt number increases for larger values of radiation parameter

R, Prandtl number Pr, Eckert number Ec and Q for S = 0.5.

Table 3.1: Calculated values for the skin friction coefficient and Nusselt num-
ber for S = −0.5 and different values of various parameter given below.

Present Ref. [42]

M λ R Pr Ec Q −CfRe
1
2
x NuxRe

−1
2

x −CfRe
1
2
x NuxRe

−1
2

x

0.0 0.1 0.1 0.72 0.2 0.2 0.828243 1.124318 0.828193 1.122511

0.5 1.039380 1.101820 1.039380 1.101777

0.7 1.114734 1.094640 1.114734 1.094561

0.5 0.0 1.000002 1.110644 1.114734 1.110629

0.3 1.1147346 1.085531 1.000000 1.085220

0.5 1.186140 1.070166 1.114734 1.070016

0.1 0.0 1.186140 1.047671 1.186141 1.048135

0.3 1.186140 1.198052 1.186141 1.197294

0.5 1.186140 1.282295 1.186141 1.280275

0.1 0.5 1.186140 0.883259 1.186141 0.882080

0.8 1.186140 1.173445 1.186141 1.173573

1.0 1.186140 1.338949 1.186141 1.339317

0.72 0.1 1.186140 1.064542 1.186141 1.064425

0.5 1.186140 1.2311610 1.186141 1.231380

1.0 1.186140 1.530620 1.186141 1.531700

0.2 0.1 1.186140 1.05190 1.186141 1.051023

0.5 1.186140 1.229588 1.186141 1.229901

1.0 1.186140 1.404916 1.186141 1.405220

0.3 0.3 1.134546 1.085931 1.098765 1.095220

0.5 0.4 1.139876 1.089031 1.087600 1.198720

0.0 0.2 1.108946 1.085531 1.897611 1.197294

0.3 0.5 1.118976 1.1908531 1.8909786 1.112020

0.1 0.5 1.186140 1.047671 1.186141 1.048135

0.3 1.196140 1.213958 1.196141 1.219901
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Table 3.2: Calculated values for the skin friction coefficient and Nusselt num-
ber for S = 0.5 and different values of various parameter given below.

Present Ref. [42]

M λ R Pr Ec Q −CfRe
1
2
x NuxRe

−1
2

x −CfRe
1
2
x NuxRe

−1
2

x

0.0 0.1 0.1 0.72 0.2 0.2 1.328199 1.475153 1.328193 1.475553

0.5 1.539379 1.475482 1.539380 1.476072

0.7 1.614734 1.476335 1.614734 1.476997

0.5 0.0 1.500000 1.480848 1.499999 1.481418

0.3 1.614734 1.465576 1.614734 1.466203

0.5 1.686140 1.456625 1.686141 1.457288

0.1 0.0 1.539379 1.440848 1.686141 1.441541

0.3 1.539379 1.539490 1.686141 1.539609

0.5 1.686140 1.597529 1.686141 1.596651

0.1 0.5 1.686140 1.104356 1.686141 1.103911

0.8 1.686140 1.606845 1.686141 1.607602

1.0 1.686140 1.930757 1.686141 1.931816

0.72 0.1 1.686140 1.399879 1.686141 1.400248

0.5 1.686140 1.760762 1.686141 1.762364

1.0 1.686140 2.597935 1.686141 2.604196

0.2 0.1 1.686140 1.422290 1.686141 1.422651

0.5 1.686140 1.612618 1.686141 1.613325

1.0 1.686140 1.799781 1.686141 1.800472

0.0 0.3 1.614734 1.465576 1.614734 1.466203

0.5 1.696140 1.476625 1.696141 1.497288

0.2 1.519379 1.450848 1.526141 1.451541

0.3 1.539379 1.539490 1.686141 1.539609

0.3 0.7 1.686140 1.597529 1.686141 1.596651

0.1 0.5 1.686140 1.104356 1.686141 1.103911

0.8 1.686140 1.606845 1.686141 1.607602

1.0 1.686140 1.930757 1.686141 1.931816

0.72 0.1 1.686140 1.399879 1.686141 1.400248

0.5 1.686140 1.760762 1.686141 1.762364

0.3 1.539379 1.539490 1.686141 1.539609
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Figure 3.2: Effect of M on f ′(ξ).
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Figure 3.3: Effect of λ on f ′(ξ).



Radiative MHD Flow with Joule Heating ... 37

0 1 2 3 4 5 6 7 8
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

           S= -0.5
           S= 0.5

M=0.0,0.5,1.0

Figure 3.4: Effect of M on θ(ξ).
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Figure 3.5: Effect of λ on θ(ξ).
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Figure 3.6: Effect of R on θ(ξ).
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Figure 3.7: Effect of Pr on θ(ξ).
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Figure 3.8: Effect of Ec on θ(ξ).

0 1 2 3 4 5 6 7 8
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

              S = -0.5
               S = 0.5

Figure 3.9: Impact of Q on θ(ξ).



Chapter 4

Impact of Tangent Hyperbolic

Fluid and Chemical Reaction on

Radiative MHD Flow

The article of Ibrahim [42] reviewed in the preceding chapter has been extended

by considering the impact of viscous dissipation of tangent hyperbolic fluid and

chemical reaction rate. By using the similarity variables, the governing non-linear

PDEs are converted into ODEs. By using shooting technique, the solution of

ordinary differential equations is obtained. At the end of this chapter, the impact

of various parameters of the transformed ODEs is discussed for dimensionless

velocity, temperature, concentration, Nusselt number, skin friction coefficient and

Sherwood mumber. Investigation of numerical results is presented through the

graphs and tables.

4.1 Mathematical Modeling

Consider a steady, two dimensional, radiative MHD flow of an incompressible

tangent hyperbolic viscous fluid over a permeable extending sheet placed at y=0

in the existence of Joule heating and viscous dissipation. The direction of the flow

40
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is taken along x-axis while y-axis is considered normal to it. A steady magnetic

field of strength B0 is employed in the perpendicular direction to the sheet. Two

equivalent yet inverse strengths follow up on the sheet to extend it along its length

with a speed uw keeping the origin fixed along the x-axis. The velocity of the sheet

is assumed to be uw = cx, c is a positive constant. The flow configuration and

coordinate system are shown in Figure 4.1. In addition, the concentration of flow

is examined with the assistance of concentration equation under the impact of

mass diffusion and chemical reaction.

Figure 4.1: Physical configuration

4.2 The Governing Equations

With the aforementioned assumptions, the governing equations of the flow are

given by

• Continuity Equation:
∂u

∂x
+
∂v

∂y
= 0, (4.1)
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• Momentum Equation:

u
∂u

∂x
+ v

∂u

∂y
= ν(1− n)

∂2u

∂y2
+
√

2νnΓ

(
∂2u

∂y2

)(
∂u

∂y

)
− σB2

0

ρ
u− ν

Kp

u,

(4.2)

• Energy Equation:

u
∂T

∂x
+ v

∂T

∂y
=

k

ρCp

∂2T

∂y2
+

ν

Cp
(1− n)

(
∂u

∂y

)2

+
νnΓ√
2Cp

(
∂2u

∂y2

)(
∂u

∂y

)
− 1

ρCp

∂qr
∂y

+
σB2

0

ρCp
u2 +

Q0

ρCp
(T∞ − T ). (4.3)

• Concentration Equation:

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
−K1(C − C∞). (4.4)

Boundary Conditions

The dimensional form of the boundary conditions is given as:

u = cx, v = −v0,
∂T

∂y
= Bx2, C = Cw, at y = 0,

u = 0, T = T∞, C = C∞, at y →∞.

 (4.5)

Here u and v are velocity components in x and y direction, respectively. The x

and y are axial and normal coordinates, ρ is the density of the fluid, σ is the

electrical conductivity, ν is the kinematic viscosity, k is thermal conductivity, Cp

is the specific heat at constant pressure, Kp is the permeability of porous medium,

Power law index is denoted by n, D is the mass diffusion, K1 is the reaction rate

on the fluid concentration, T is a fluid temperature, B0 is magnetic field strength

and qw indicates the wall heat flux.

u = cxf ′(ξ), v = −
√
cνf(ξ),

ξ = y

√
c

ν
, T = T∞ +Bx2

√
ν

c
θ(ξ),

φ(ξ) =
C − C∞
Cw − C∞

.


(4.6)
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The detailed procedure for the conversion of Eq. (4.1) into ODE has been discussed

in Chapter 3. Now we include the below procedure for the conversion of Eq. (4.2)

into the dimensionless form. So in order to derive the left hand side of the Eq.

(4.2), the following procedure is adopted.

u
∂u

∂x
+ v

∂u

∂y
= cxf ′(ξ)

∂

∂x
(cxf ′(ξ)) + (−

√
cνf(ξ)

∂

∂y
(cxf ′(ξ),

u
∂u

∂x
+ v

∂u

∂y
= cxf ′(ξ)cf ′(ξ) + (−

√
cνf(ξ)

1√
ν
c

3
2xf ′′(ξ)),

u
∂u

∂x
+ v

∂u

∂y
= c2xf ′

2

(ξ)− c2xff ′′. (4.7)

Similarly for the derivation of right hand side of Eq. (4.2) following steps are useful

ν(1− n)
∂2u

∂y2
+
√

2νnΓ(
∂2u

∂y2
)(
∂u

∂y
)− σB2

0

ρ
u− ν

Kp

u, (4.8)

= ν(1− n)
c2x

ν
f ′′′(ξ) +

√
2νnΓ

c2x

ν
f ′′′(ξ)(

c
3
2

√
ν
xf ′′(ξ))− (

σB2
0

ρ
cxf ′(ξ)− ν

Kp

cxf ′(ξ).

(4.9)

By comparing Eq. (4.7) and Eq. (4.9) we get

c2xf ′
2

(ξ)− c2xff ′′ = cxν(1− n)
c

ν
f ′′′(ξ) +

√
2νnΓ

c

ν
f ′′′(ξ)(

c
3
2

√
ν
xf ′′(ξ))

− σB2
0

ρ
f ′(ξ)− ν

Kp

f ′(ξ),

⇒ c2x[f ′
2

(ξ)− ff ′′] = cx[ν(1− n)
c

ν
f ′′′(ξ) +

√
2νnΓx

c

ν
f ′′′(ξ)(

c
3
2

√
ν
xf ′′(ξ)

− σB2
0

ρ
f ′(ξ)− ν

Kp

f ′(ξ)],

⇒ c[f ′
2

(ξ)− ff ′′] = (1− n)cf ′′′(ξ) +
√

2νnΓx
c

5
2

√
ν
f ′′′(ξ)f ′′(ξ))

− σB2
0

ρ
f ′(ξ)− ν

Kp

f ′(ξ),

⇒ f ′
2

(ξ)− ff ′′ = (1− n)f ′′′(ξ) +
√

2νnΓx
c

3
2

√
ν
f ′′′(ξ)f ′′(ξ)

− σB2
0

ρc
f ′(ξ)− ν

Kpc
f ′(ξ),
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⇒ f ′
2

(ξ)− ff ′′ = (1− n)f ′′′(ξ) +
√

2νnΓx
c

3
2

√
ν
f ′′′(ξ)f ′′(ξ)−Mf ′(ξ)− λf ′(ξ),

f ′
2

(ξ)− ff ′′ = (1− n)f ′′′(ξ) + nWef ′′′(ξ)f ′′(ξ)−Mf ′(ξ)− λf ′(ξ). (4.10)

Hence the final dimensionless form becomes

(1− n)f ′′′ + ff ′′ − f ′2 − (M + λ)f ′ + nWef ′′′f ′′ = 0.

Next, converting the energy equation into the dimensionless form we use Eq. (4.6)

into Eq. (4.3)

T = T∞ +Bx2
√
ν

c
θ(ξ). (4.11)

Differentiating Eq. (4.11) w.r.t ‘x′ we have

∂T

∂x
=

∂

∂x

(
Bx2

√
ν

c
θ(ξ)

)
,

∂T

∂x
= 2Bx

√
ν

c
θ(ξ). (4.12)

Similarly, differentiating Eq. (4.11) w.r.t ‘y′

∂T

∂y
= Bx2

√
ν

c
θ′(ξ)

√
c

ν
,

∂T

∂y
= Bx2θ′(ξ). (4.13)

Now using Eqs. (4.12) and (4.13) into the left hand side of Eq. (4.3)

= u
∂T

∂x
+ v

∂T

∂y
,

= cxf ′(ξ)2Bx

√
ν

c
θ(ξ)−

(√
cνf(ξ)Bx2θ′(ξ)

)
,

=
√
cνf ′(ξ)2Bx2θ(ξ)−

√
cνf(ξ)Bx2θ′(ξ). (4.14)

Multiplying Eq. (4.14) by ρCp
kBx2

√
ν
c

=
ρCp
kBx2

νf ′(ξ)θ(ξ)2Bx2 − νρCp
k

θ′(ξ)f(ξ),

= 2Prf ′(ξ)θ(ξ)− Prθ′(ξ)f(ξ). (4.15)



Impact of Tangent hyperbolic fluid and Chemical Reaction on Radiative flow 45

Now using Eq. (4.6) into the right hand side of Eq. (4.3), we have

=
k

ρCp

∂2T

∂y2
+

ν

Cp
(1− n)

(
∂u

∂y

)2

+
νnΓ√
2Cp

(
∂2u

∂y2

)(
∂u

∂y

)
− 1

ρCp

∂qr
∂y

+
σB2

0

ρCP
u2 +

Q0

ρCp
(T∞ − T ),

=
k

ρCp

∂2

∂y2

(
T∞ +Bx2

√
ν

c
θ(ξ)

)
+

ν

Cp
(1− n)

(
∂

∂y
(cxf ′(ξ))

)2

+
νnΓ√
2Cp

(
∂

∂y
(cxf ′(ξ))

)(
∂

∂y
(cxf ′(ξ))

)2

− 1

ρCp

∂

∂y

(
−4σ∗

3k∗
∂T 4

∂y

)
+
σB2

0

ρCp
(cxf ′(ξ))

2
+

Q0

ρCp

(
T∞ − T∞ −Bx2

√
ν

c
θ(ξ)

)
,

=
k

ρCp

∂

∂y

(
Bx2

√
ν

c
θ′(ξ)

√
c

ν

)
+

1

ρCp

16

3

σ∗T 3

k∗
∂2T

∂y2
+
σB2

0

ρCp
c2x2f ′

2

(ξ)

+
ν

Cp
(1− n)c2x2 (f ′′(ξ))

2 c

ν
+

νnΓ√
2Cp

c
3
2x√
ν
f ′′(ξ)c2x2 (f ′′(ξ))

2 c

ν

+
Q0

ρCp

(
−Bx2

√
ν

c
θ(ξ)

)
,

=
k

ρCp

(
θ′′(ξ)Bx2

√
c

ν

)
+

1− n
Cp

(c3x2)f ′′
2

(ξ) +
νnΓ√
2Cp

c
9
2x3

ν
√
ν

(f ′′(ξ))
3

+
1

ρCp

16

3

σ∗T 3

k∗
θ′′(ξ)Bx2

√
c

ν
+
σB2

0

ρCp
c2x2f ′

2

(ξ) +
Q0

ρCp

(
−Bx2

√
ν

c
θ(ξ)

)
,

=
k

ρCp

(
θ′′(ξ)Bx2

√
c

ν

)
+

16σ∗T 3
∞

ρCp3k∗

(
θ′′(ξ)Bx2

√
c

ν

)
+
σB2

0

ρCp
c2x2f ′

2

(ξ)

+
Q0

ρCp

(
−Bx2

√
ν

c
θ(ξ)

)
+

1− n
Cp

(
c3x2f ′′

2

(ξ)
)

+
νnΓ√
2Cp

c
9
2x3

ν
√
ν

(f ′′(ξ))
3
. (4.16)

Multiplying Eq. (4.16) by ρCp
kBx2

√
ν
c

⇒ ρCp
kBx2

√
ν

c

(
k

ρCp
(θ′′(ξ)Bx2

√
c

ν
)

)
+

ρCp
kBx2

√
ν

c

(
1− n
Cp

c3x2f ′′
2

(ξ)

)
+

ρCp
kBx2

√
ν

c

(
νnΓ√
2Cp

c
9
2x3

ν
√
ν

(f ′′(ξ))
3

)
+

ρCp
kBx2

√
ν

c

(
σB2

0

ρCp
c2x2f ′

2

(ξ)

)
− ρCp
kBx2

√
ν

c

Q0

ρCp

(
Bx2

√
ν

c
θ(ξ)

)
+

ρCp
kBx2

√
ν

c

(
16σ∗T 3

∞
ρCP3k∗

(θ′′(ξ))Bx2
√
c

ν

)
,

⇒ θ′′
(

1 +
4

3
R

)
+ (1− n)

c3ρCp
kBCp

√
ν

c
f ′′

2

(ξ) +
ρCp
kBx2

√
ν

c

(
νnΓ√
2Cp

c
9
2x3

ν
√
ν

(f ′′(ξ))
3

)

+
ρCpσB

2
0c

2

kBρCp

√
ν

c
f ′

2

(ξ)− PrQθ.



Impact of Tangent hyperbolic fluid and Chemical Reaction on Radiative flow 46

Multiplying and dividing by ‘cν’

θ′′
(

1 +
4

3
R

)
cν

cν
+ (1− n)

c3ρCp
kBCp

√
ν

c
f ′′

2

(ξ)
cν

cν
+ nPrEc

c
3
2xΓ√
2ν

(f ′′(ξ))
3

+
ρCpσB

2
0c

2

kBρCp

√
ν

c

cν

cν
f ′

2

(ξ)− cν

cν
PrQθ,

θ′′(1 +
4

3
R) + (1− n)PrEc

(
f ′′

2
)

+
nPrEcWe

2
(f ′′(ξ))

3
+ PrEcMf ′

2 − PrQθ.

(4.17)

Combining Eq. (4.15) and (4.17)

2Prf ′(ξ)θ(ξ)− Prθ′(ξ)f(ξ) = θ′′(1 +
4

3
R) + (1− n)PrEc

(
f ′′

2
)

+
nPrEcWe

2
(f ′′(ξ))

3
+ PrEcMf ′

2 − PrQθ,

(1 +
4

3
R)θ′′ + Prθ′(ξ)f(ξ)− 2Prf ′(ξ)θ(ξ) + (1− n)PrEc

(
f ′′

2
)

+
nPrEcWe

2
(f ′′(ξ))

3
+ PrEcMf ′

2 − PrQθ = 0.

Next, converting the concentration equation into the dimensionless form we use

Eq. (4.6) into Eq. (4.4)

C = (Cw − C∞)φ(ξ) + C∞. (4.18)

Differentiate Eq. (4.18) w.r.t ′x′ we have

∂C

∂x
= (Cw − C∞)φ′(ξ)0,

u
∂C

∂x
= 0. (4.19)

Similarly, differentiating Eq. (4.18) w.r.t ′y′ and multiplying with v

∂C

∂y
= φ′(Cw − C∞).

√
c

ν
, (4.20)

v
∂C

∂y
= φ′(Cw − C∞)

√
c

ν
.−
√
cνf(ξ), (4.21)

v
∂C

∂y
= −c(Cw − C∞)f(ξ)φ′(ξ). (4.22)
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Again differentiating Eq. (4.20) w. r. t. ′y′

∂2C

∂y2
=

∂

∂y

(
φ′(Cw − C∞).

√
c

ν

)
,

∂2C

∂y2
= φ′′(Cw − C∞)

(√
c

ν

√
c

ν

)
,

∂2C

∂y2
= φ′′(Cw − C∞)

c

ν
. (4.23)

Now putting Eqs. (4.19), (4.22) and (4.23) in Eq. (4.4), we have

0− c(Cw − C∞)f(ξ)φ′(ξ) = Dφ′′(Cw − C∞)
c

ν
−K1(C − C∞),

D
c

ν
(Cw − C∞)φ′′ + c(Cw − C∞)f(ξ)φ′(ξ)−K1(C − C∞) = 0,

D
c

ν
(Cw − C∞)

(
φ′′ +

ν

D
fφ(ξ)− K1(C − C∞)ν

D(Cw − C∞)c

)
= 0,

φ′′ + Scfφ(ξ)− K1((Cw − C∞)φ(ξ) + C∞ − C∞)ν

D(Cw − C∞)c
,

φ′′ + Scfφ(ξ)− K1ν

Dc
φ(ξ) = 0,

φ′′ + Scfφ(ξ)− Scγφ(ξ) = 0. (4.24)

Next for converting the associated boundary conditions into the dimensionless

form, the following steps have been implemented as:

u = cxf ′(ξ) at y = 0, cxf ′(ξ) = cx,

cxf ′(0) = cx, at y = 0, f ′(0) = 1.

(4.25)

v = −
√
cνf(ξ) at y = 0, v = −v0,

− v0 = −
√
cνf(ξ), v0 =

√
cνf(0) at y = 0, f(0) =

v0√
cν
,

S =
v0√
cν

V f(ξ) at ξ = 0, f(0) = S.

T = T∞ +Bx2
√
ν

c
θ(ξ) at y = 0,

∂T

∂y
= Bx2,

∂T

∂y
= Bx2

√
ν

c
θ′(ξ).

c

ν
,

Bx2 = Bx2θ′(0), at y = 0, θ′(0) = 1.
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u = 0 at y →∞, cxf ′(ξ) = 0,

cxf ′(∞) = 0 at y →∞, f ′(∞) = 0.

T = T∞ at y →∞, T = T∞ +Bx2
√
ν

c
θ(ξ) at y →∞,

Bx2
√
ν

c
= 0, θ(∞) = 0.

C = Cw, at y = 0, φ(ξ)(Cw − C∞) + C∞ = Cw,

φ(ξ)(Cw − C∞) = (Cw − C∞),

φ(ξ) = 1, at ξ = 0, φ(0) = 1.

C → C∞ at y →∞, φ(ξ)(Cw − C∞) + C∞ → C∞,

φ(ξ)(Cw − C∞)→ 0, φ(ξ)→ 0 as ξ →∞, φ(ξ)→ 0.

The final non-dimensional form of the governing equations is:

(1− n)f ′′′ + ff ′′ − f ′2 − (M + λ)f ′ + nWef ′′′f ′′ = 0, (4.26)

(1 +
4

3
R)θ′′ + Prθ′(ξ)f(ξ)− 2Prf ′(ξ)θ(ξ) + (1− n)PrEc

(
f ′′

2
)

+
nPrEcWe

2
(f ′′(ξ))

3
+ PrEcMf ′

2 − PrQθ = 0. (4.27)

φ′′ + Scfφ(ξ)− Scγφ(ξ) = 0. (4.28)

The transformed boundary conditions (4.5) formulated as:

f(0) = S, f ′(0) = 1, θ′(0) = 1, φ(0) = 1,

f ′(∞) = 0, φ(∞) = 0, θ(∞) = 0.

 (4.29)

In the above equations the dimensionless quantities are formulated as:

M =
σB2

0

ρc
(Magnetic parameter),

λ =
ν

Kpc
(Permeability parameter),
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R =
4σ∗T 3

∞
k∗k

(Radiation parameter),

S =
v0√
νc

(Suction/injection parameter),

Ec =
c

5
2

√
νBCp

(Eckert number),

Q =
Q0

ρCpc
(Heat generation parameter),

P r =
ρCpν

k
(Prandtl number),

Sc =
ν

D
(Schmidt number),

We =

√
2c

3
2xΓ√
ν

(Weizenberg number),

r =
K1

c
(Chemical reaction parameter).

4.3 Physical Quantities of Interest

The skin friction (Cf ), the Nusselt number (Nux) and the Sherwood number (Shx)

are the main physical quantities, we discussed here.

The skin friction coefficient Cf can be expressed as:

Cf =
τw
ρuw2

,

τw = µ

(
∂u

∂y

)
y=0

,

∂u

∂y
= cxf ′′(ξ)

√
c

ν
,

Cf = µ

(
cx
√

c
ν
f ′′(0)

ρc2x2

)
,

Cf =
ν
√

c
ν
f ′′(0)

cx
,

Cf =

√
ν√
cx
f ′′(0),

Cf =
1√
Re

f ′′(0),

Re
1
2Cf = f ′′(0).
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The Nusselt number Nux

Nux =
xqw

k(Tw − T∞)
,

qw =

(
−
(
k +

16σ∗T 3
∞

3k∗

)(
∂T

∂y

))
y=0

,

T = T∞ +Bx2
√
c

ν
θ(ξ),(

∂T

∂y

)
y=0

= Bx2,

Nux =
−x
(
k + 16σ∗T 3

∞
3k∗

)
Bx2

k
(
Bx2

√
ν
c
θ(ξ)

) ,

Nux =
−Bx3

(
k + 16σ∗T 3

∞
3k∗

)
Bx2

(
k
√

ν
c

)
θ(0)

,

Nux =
−
√

c
ν
x
(
1 + 4

3
R
)

θ(0)
,

Nux =
−Re 1

2

(
1 + 4

3
R
)

θ(0)
,

Re
−1
2 Nux = −

1 + 4
3
R

θ(0)
.

Mathematical form of the Sherwood number is:

Shx =
−x(∂C

∂y
)y=0

Cw − C∞
,

C = (Cw − C∞)φ(ξ) + C∞,

∂C

∂y
= φ′(0)(Cw − C∞)

√
c

ν
,

Shx =
−x

Cw − C∞
φ′(0)

√
c

ν
(Cw − C∞),

Shx = −
√
xuw
ν
φ′(0),

Shx(Rex)
−1
2 = −φ′(0),

where, the Reynolds number is: Rex = uwx
ν
.
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4.4 Solution Methodology

To obtain the numerical solution for the dimensionless system of ordinary differ-

ential equations (4.26)-(4.28) subject to boundary conditions Eq. (4.29), shooting

method with Runge Kutta method of order four has been used. First, the momen-

tum equation is solved independently. Following notations have been considered

for the conversion of these equations into a system of first order differential equa-

tions as follows:

f = y1, f ′ = y′1 = y2, f ′′ = y′2 = y3, f ′′′ = y′′′1 = y′′2 = y′3.

Rewriting these representations with initial conditions, as a result the momentum

equation is converted into following system of first order ODEs.

y′1 = y2; y1(0) = S, (4.30)

y′2 = y3; y2(0) = 1, (4.31)

y′3 =
1

1− n+ nWey3
[−y1y3 + y2

2 + (M + λ)y2]; y3(0) = α. (4.32)

where α is the missing initial condition. The IVP has been solved by using RK4

method.

The domain of the IVP has been taken as [0, ξ∞] instead of [0,∞). Where ξ∞ ia

chosen in such a way that no significant variation is observed in the solution for

ξ > ξ∞.

The missing condition α is to be chosen such that, the component y2 satisfies the

follow boundary condition.

y2(ξ∞, α) = 0.

To solve the above equation, Newton’s method is used to refine the value of α with

following iterative scheme.

αj+1 = αj −
y2(ξ∞, α)

∂
∂α

(y2 (ξ∞, α))
, j = 0, 1, 2, 3, . . . .
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We further introduce the following notations,

∂y1
∂α

= y4,
∂y2
∂α

= y5,
∂y3
∂α

= y6.

Hence the Newton’s iterative scheme gets the following form

αj+1 = αj −
y2(ξ∞, α)

y5(ξ∞, α)
, j = 0, 1, 2, 3, . . . .

By differentiating Eqs. (4.30), (4.31) and (4.32) with respect to α we get three

more ODEs.

Thus, we have the following initial value problem (IVP).

y′1 = y2; y1(0) = S,

y′2 = y3; y2(0) = 1,

y′3 =
1

1− n+ nWey3
[−y1y3 + y2

2 + (M + λ)y2]; y3(0) = α,

y′4 = y5; y4(0) = 0,

y′5 = y6; y5(0) = 0,

y′6 =
1

1− n+ nWey3
2 [1− n+ nWey3(−y1y6 + y4y3 + 2y2y5

+ (M + L)y5)− (y22 − y1y3 + (M + λ)y2)nWey6]; y6(0) = 1.

The Newton’s iterative process is repeated until the following condition is met.

|y2(ξ∞, α)| < ε,

where ε is taken as 10−6.

To numerically solve the Eqs. (4.27) and (4.28), the missing initial condition at

θ(0) is β and φ′(0) is ζ.

The following representations are considered:

θ = Z1, θ′ = Z2, φ = Z3, φ′ = Z4.

Using these notations and differentiating the system of four first order ODEs with

respect to β, and ζ.
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We get another system of ODEs, as follows.

Z ′1 = Z2, Z1(0) = β,

Z ′2 =
1

1 + 4
3
R

[−Pry1Z2 + 2Pry2Z1 − (1− n)PrEcy23

− nPrEcWe

2
y23 −My22) + PrQZ1)], Z2(0) = 1,

Z ′3 = Z4, Z3(0) = 1,

Z ′4 = ScγZ3 − Scy1Z4, Z4(0) = ζ,

Z ′5 = Z6, Z5(0) = 1,

Z ′6 =
1

1 + 4
3
R

[−Pry1Z6 + 2Pry2Z5 + PrQZ5], Z6(0) = 0,

Z ′7 = Z8, Z7(0) = 0,

Z ′8 = ScγZ7 − Scy1Z8, Z8(0) = 0,

Z ′9 = Z10, Z9(0) = 0,

Z ′10 =
1

1 + 4
3
R

[−Pry1Z10 + 2Pry2Z9 + PrQZ9], Z10(0) = 0,

Z ′11 = Z12, Z11(0) = 0,

Z ′12 = ScγZ11 − Scy1Z12, Z12(0) = 1.

The RK4 scheme has been adopted for tackling the above initial value problem.

To get the approximate solution, the domain of the problem has been taken as

[0, ξ∞] instead of [0,∞), where ξ∞ is an appropriate finite positive real number

as mentioned before. The missing conditions β and ζ in the above system of

equations, are to be chosen such that

Z1(ξ∞, β, ζ) = 0, Z4(ξ∞, β, ζ) = 0.

For the improvement of the missing condition, Newton’s method has been imple-

mented which is conducted by following iterative scheme:

β(j+1)

ζ(j+1)

 =

β(j)

ζ(j)

−
Z5 Z9

Z8 Z12

−1 Z1

Z4

 j = 0, 1, 2, 3, . . . .
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The stopping criteria for the Newton’s method is set as:

max{|Z1(ξ∞)|, |Z4(ξ∞)|} < ε.

4.5 Result and Discussion

The aim of this section is to analyze the numerical results for the velocity, tem-

perature and concentration profiles with the help of graphs and tables by using

different values of involved parameter such as magnetic parameter M , permeability

parameter λ, suction and injection parameter S, Radiation parameter R, Prandtl

number Pr, Eckert number Ec, heat generation parameter Q, Weissenberg number

We, power law index n, Schmidt number Sc and γ the chemical reaction rate.

Figure 4.2 represents the impact of permeability parameter on the velocity pro-

file. It is observed that the velocity profile is decreased by increasing the value

of permeability parameter. Physically when a porous media is inserted, it creates

a drag force. Figure 4.3 shows the effect of magnetic parameter on the velocity

profile. It is observed that the velocity profile decreases by enhancing the value

of M in the presence of suction and injection, by increasing magnetic parameter

a force is produce, which is notable as Lorentz force. With the production of

this force a resistive force induces, in opposite to motion of fluid particles. Fig-

ure 4.4 represents the impact of power law index n on the velocity profile. It is

clear that the velocity profile decreases by increasing the value of n and boundary

layer thickness also decreases. Figure 4.5 demonstrates the influence of We on

the velocity profile. As We is the ratio of relaxation time of fluid and specific

process time. It increases the thickness of the fluid so, velocity profile decreases

by enhancing in the value of We. Figure 4.6 demonstrates the influence of M

on the concentration profile. By increasing the value of M the concentration an

opposing force is produced. The opposing force produces more obstacles in the

fluid flow. Figure 4.7 represents the impact of Sc on the concentration profile. As

Sc is the ratio of viscous diffusion rate to mass diffusion rate, it is observed that
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the concentration profile declines by increasing the value of Sc. The large numer-

ical values Sc produce less mass diffusion therefore nano-particle concentration is

dropped. Figure 4.8 demonstrates the influence of chemical reaction rate r on the

concentration profile. By increasing the value of chemical reaction parameter r

the fluid concentration decreases, it happen because chemical reaction assists to

facilitate the transfer of mass and decreases the boundary layer thickness. Figure

4.9 represents the effect of n on the concentration profile. By increasing the value

of power law index n tends to accelerate the flow and decreases the boundary layer

thickness. Figure 4.10 depicts that the temperature profile increases with the mag-

netic parameter M . Temperature profile increases because of the resistive force

called Lorentz force that crosses the fluid motion and hence heat is transformed.

Figure 4.11 delineates the consequence of permeability parameter on the temper-

ature profile. Addition of permeable medium within the flow leads to drag force

causing the flow to move slower and liquid temperature rises, hence the tempera-

ture profile is enhanced with increasing the permeability parameter. Table 4.1 and

4.2 demonstrate the impact of effective parameters on the local Nusselt number

and skin friction coefficient. From these tables, it is observed that Nusselt number

increase with the increasing the value of M and λ, increasing value of power law

index n and We the value of skin friction also increases. Nusselt number decreases

by enhancing the value of Pr. Similarly, for the rising value of M and λ the skin

friction coefficient declines and rising Prandtl number Pr values there is no change

in skin friction coefficient in case of injection and suction. Table 4.3 represents

the impact of various parameter on Sherwood number in case of injection. If the

value of M and λ increases the Sherwood number also increases, if we rises the

value of We and r there is no change in Sherwood number, increasing the value

of Sc and n it will be the escalate in the value of Sherwood number, enhancing

the value of Pr, Ec and Q the value of Sherwood number reduced. Table 4.4

shows the influence of different parameter on Sherwood number in the presence

of suction. The Sherwood number increases for enhancing the value of M , λ, We

and Sc while Sherwood number declines if we enhance the value of r, n and R.

By rising the value of Pr, Ec and Q, the Sherwood number is found to decrease.
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Figure 4.2: Effect of λ on f ′(ξ).
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Figure 4.3: Effect of M on f ′(ξ).



Impact of Tangent hyperbolic fluid and Chemical Reaction on Radiative flow 57

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

              S = - 0.5
              S = 0.5

n = 0.1, 0.2, 0.3

Figure 4.4: Effect of n on f ′(ξ).
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Figure 4.5: Effect of We on f ′(ξ).
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Figure 4.6: Effect of M on φ(ξ).
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Table 4.1: Calculated values for skin friction coefficient and Nusselt number
for S = 0.5 and different values of various parameter given below.

M λ We Sc γ n Pr Ec R Q NuxRe
−1
2
x −CfRe

1
2
x

0.0 0.1 0.1 5.0 0.3 0.3 0.72 0.2 0.1 0.2 0.80300 1.70769

0.5 0.81261 1.97311

0.7 0.81561 2.06853

0.5 0.0 0.80844 1.92339

0.3 0.82042 2.06853

0.5 0.82761 2.15928

0.0 0.74432 2.15928

0.3 0.90895 1.97311

0.1 0.5 1.14218 1.97311

0.5 0.1 1.09698 1.97311

0.8 0.74371 1.97311

1.0 0.61436 1.97311

0.1 0.65484 1.97311

0.5 0.49290 1.97311

0.72 1.0 0.50757 1.97311

0.1 0.52772 1.97311

0.5 0.463985 1.97311

0.7 0.50757 1.97311

0.9 0.50577 1.97311

3.0 0.50577 1.97311

7.0 0.50577 1.97311

0.1 0.50577 1.97311

0.2 0.45135 1.650827

0.3 0.47684 1.790466

0.5 0.48297 1.85788

0.4 0.48997 1.93998

0.1 0.6 0.53767 1.97311

5.0 0.54678 1.97311

9.0 0.55089 1.97311

0.2 0.55912 1.97311
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Table 4.2: Calculated values for skin friction coefficient and Nusselt number
for S = −0.5 and different values of various parameter given below.

M λ We Sc γ n Pr Ec R Q NuxRe
−1
2
x −CfRe

1
2
x

0.0 0.1 0.1 5.0 0.3 0.3 0.72 0.2 0.1 0.2 1.03234 0.956399

0.5 1.07041 1.21357

0.7 1.08426 1.30600

0.5 0.0 1.05887 1.165405

0.3 1.09254 1.30600

0.5 1.11351 1.39390

0.0 1.02814 1.39390

0.3 1.27517 1.39390

0.1 0.5 1.42701 1.39390

0.5 0.1 1.34470 1.21357

0.8 1.00301 1.21357

1.0 0.87520 1.21357

0.1 0.90981 1.21357

0.5 0.77138 1.21357

0.72 1.0 0.81460 1.21357

0.1 0.85653 1.21357

0.5 0.72729 1.21357

0.7 0.72729 1.21357

0.9 0.72729 1.21357

3.0 0.72729 1.21357

7.0 0.72729 1.21357

0.1 0.68182 1.08783

0.2 0.70293 1.14485

0.3 0.70650 1.16416

0.5 0.71026 1.18542

0.4 0.78304 1.49045

0.1 0.6 0.79762 1.50875

5.0 0.81455 1.06634

9.0 0.81455 1.06634

0.2 0.87778 1.06634
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Table 4.3: Calculated values for Sherwood number for S = −0.5 and different
values of various parameter given below.

M λ We Sc γ n Pr Ec R Q ShxRe
−1
2
x

0.0 0.1 0.1 5.0 0.3 0.3 0.72 0.2 0.1 0.2 0.989937

0.3 1.009535

0.5 1.021323

0.7 1.032516

0.3 1.12004

0.5 1.040800

0.7 1.052199

0.3 0.992600

0.5 0.995486

0.7 0.998645

3.0 0.989937

7.0 0.989937

1.0 0.989937

0.1 0.989937

0.5 0.989937

0.7 0.989937

0.1 0.981729

0.5 1.016702

0.3 0.989937

0.5 1.232902

0.8 0.930059

0.72 1.011303

0.2 0.989937

0.3 0.968841

0.5 0.926648

0.3 1.123496

0.5 0.989937

0.2 0.989937
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Table 4.4: Calculated values for Sherwood number for S = 0.5 and different
values of various parameter given below.

M λ We Sc γ n Pr Ec R Q ShxRe
−1
2
x

0.0 0.1 0.1 5.0 0.3 0.3 0.72 0.2 0.1 0.2 0.677254

0.3 0.675594

0.5 0.674256

0.7 0.672771

0.0 0.3 0.6807175

0.5 0.683674

0.7 0.686218

0.1 0.3 0.679135

0.5 0.6812098

0.7 0.6836003

0.1 3.0 0.677254

7.0 0.677725

1.0 0.677254

3.0 0.1 0.677725

0.5 0.677725

0.7 0.677725

0.3 0.1 0.667583

0.5 0.690033

0.3 0.677254

0.3 0.5 0.902587

0.8 0.621596

0.72 0.677254

0.2 0.677254

0.3 0.643683

0.5 0.576540

0.2 0.3 0.896189

0.5 1.035105

0.2 0.749723



Chapter 5

Conclusion

In this thesis, the work of Ibrahim et al. [42] is reviewed and extended the radia-

tive MHD flow for the effect of tangent hyperbolic fluid and chemical reaction.

First of all, momentum, energy and concentration equations are converted into

the ODEs by using appropriate similarity transformations. By using the shooting

technique, the numerical solution has been found for the transformed ODEs. To

analyze the influence of several physical parameters on velocity, temperature and

concentration profiles, the results are presented in the form of tables and graphs.

The Skin friction coefficient Cf , Nusselt number Nux and Sherwood number Shx

are investigated through table for the appropriate values of the parameters us-

ing MATLAB. The achievements of the current study that has been numerically

analyzed, the following worthy points can be concluded:

• The velocity profile decreases by increasing the values of permeability pa-

rameter λ, while the temperature profile increases in case of enhancing the

value of λ.

• Enhancing the value of Prandtl number, both Nusselt number and temper-

ature profiles declines.

• Sherwood number decreases with higher values of Prandtl and Eckert num-

ber, while it increases in case of enhancing the value of the radiation param-

eter.
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• With growth in Schmidt number Sc, the concentration profile declines.

• Velocity profile decreases with an increase in power law index n and Weis-

senberg number We.

• Skin friction coefficient increases with increasing the values of power law

index n and Weissenberg number We.

• The velocity profile deteriorates and temperature profile increases with in-

creasing value of magnetic parameter M .

• Nusselt number increases with enhancing the values of M and λ.

• Skin friction coefficient deteriorates with increasing the values of M and λ.

• Nusselt number depreciates by increasing the values of heat generation pa-

rameter.
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